AACR poster # 3942

Differential expression of a novel transport receptor, SORT1 (sortilin), in cancer versus healthy tissues that can be utilized for targeted delivery of anti-cancer drugs Guylaine Roy¹, Pratik Kadekar¹, Lynn Marie Douglas¹, Maude Frappier¹, Jean-Christophe Currie¹, Jess Dhillon², Gregory Cesarone²,

Richard Siderits², Karen Kirchner², Michel Demeule¹, and Christian Marsolais¹ ¹ Theratechnologies Inc., Montréal, QC, Canada. ² Discovery Life Sciences, LLC, Newton, PA, USA.

Introduction

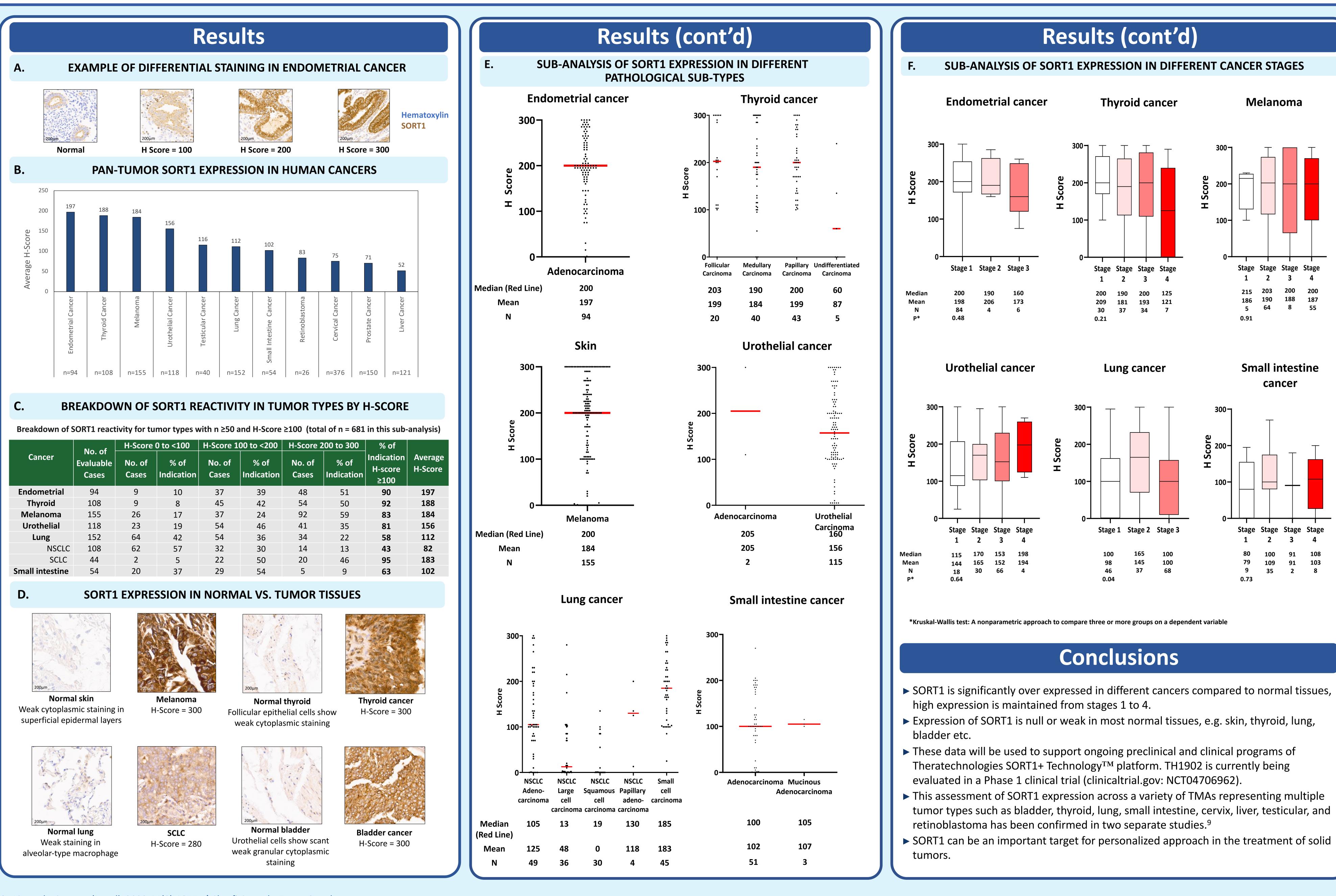
- ► Sortilin (SORT1), or neurotensin receptor-3, is a scavenger receptor in the Vacuolar Protein Sorting 10 protein (Vps10p) family.
- SORT1 is involved in the rapid transport of molecules across the cell membrane with an internalization half-life of ≤4 min of its ligands (neurotensin and progranulin).¹ SORT1 is thus an ideal candidate for the internalization of peptidedrug conjugates (PDCs).
- ► The role of SORT1 in cancer continue to be investigated; it is associated with progression, invasion, and more aggressive disease. The PDC TH1902, a new drug in development has been shown to exert its anti-cancer effects in triple-negative breast cancer (TNBC), ovarian, and endometrial cancers.²⁻⁵
- The pattern and prevalence of SORT1 expression in different healthy and cancer tissues is still not well understood, but it has been shown to be highly expressed in many cancers such as breast and ovarian.⁶⁻⁹
- ► The goal of this study was to gain better understanding of the expression of SORT1 in healthy tissues and multiple cancer types.

Materials and Methods

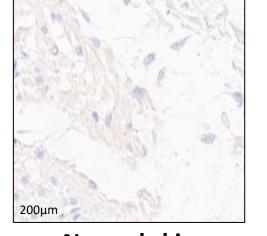
- Screening of healthy and cancer tissue microarrays (TMAs) was undertaken using a qualified immunohistochemistry (IHC) method.
- ► IHC staining for SORT1 was performed using the primary antibody ab188586 (Abcam) for the detection in formalin-fixed, paraffin-embedded (FFPE) human tissues. Nuclei are counterstained using hematoxylin (blue stain) to assess cell and tissue morphology.
- Assay testing utilized the TechMate IHC platform (Roche Diagnostics).
- ► List of TMAs screened:

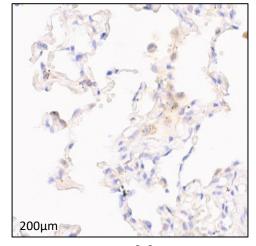
Tumor Indication	Biomax ID	No. Cores/ TMA	No. Cores/ Indication	Tumor Indication	Biomax ID	No. Cores/ TMA	No. Cores /Indication			
Endometrial Cancer	EM1021C	102	97 5 normal	Eye	BC35111a	40	28 12 normal			
Thyroid	BCC15014	40	110	Cervix	CR1101	110	388 10 normal			
	TH8010a	80	10 normal		CR2089a	208				
Melanoma	ME2082d	192	176 16 normal		CR806	80				
Lung	LC121b	120	110 NSCLC	Prostate	PR807C	80	153 27 hyperplasia 21 normal 123 22 cirrhosis 15 normal			
	LC703a	44	44 SCLC 10 normal		PR1211	121				
Bladder	BL601a	60	120		BC03117a	80				
	BL802b	80	20 normal	Liver	LV808	80				
Testis	TE481	48	40 8 normal	Multi- Normal	BCN921	92	92 normal			
Small Intestine	SM802	80	54 11 others 15 normal	Total cores screened: 1737 Total tumor cores screened: 1,443 Total of evaluable tumor cores: 1,394						

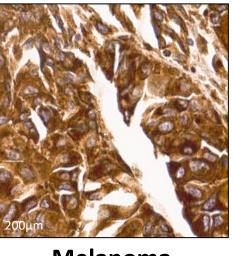
Total normal or adjacent tissues screened: 234 **Total other conditions tissues screened: 60**

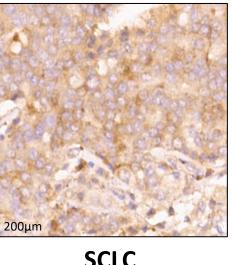

Scoring method in cancer tissues (H-score)

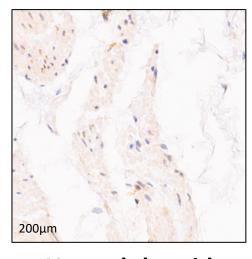
The H-score is calculated by summing the percentage of cells with intensity of expression staining multiplied by their corresponding differential intensity on a four-point semi-quantitative scale (0, 1+, 2+, 3+). Thus, scores range from 0 to 300. **H-score = [** (% at 1+) x 1 **] + [** (% at 2+) x 2 **] + [** (% at 3+) x 3 **]**

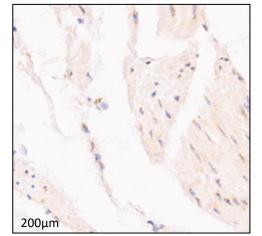

Normal tissues

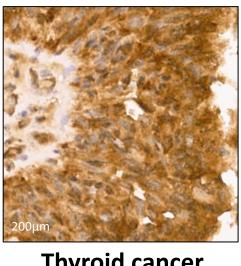

Due to the heterogeneity of cells in normal tissue (i.e. presence of multiple cell types), it was not possible to attribute an H-score representative of the tissue core. A descriptive approach was taken to identify the cell type and its staining intensity in normal tissues.

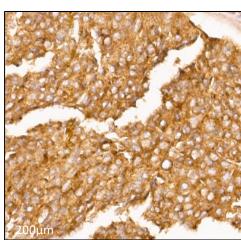

¹Hu F, et al., Neuron. 2010;68(4):654-67. ² Demeule M, et al., Pharmaceutics. 2022;14(9):1910. ³ Currie JC, et al., Cancers (Basel). 2022;14(8):1877. ⁴ Charfi C, et al., Front. Oncol. 2021;11:760787. ⁵ Demeule M, et al., Cancer Sci., 2021;112(10):4317-4334. ⁶ Roselli S, et al., Oncotarget. 2015;6(12):10473-10486. ⁷ Hemmati S, et al., Avicenna J Med Biotechnol., 2009;1(2):125-131. ⁸ Ghaemimanesh F, et al., Avicenna J Med Biotechnol. 2014;6(3):169-177. ⁹Roy G et al. EORTC-NCI-AACR-2022, abstract #328.

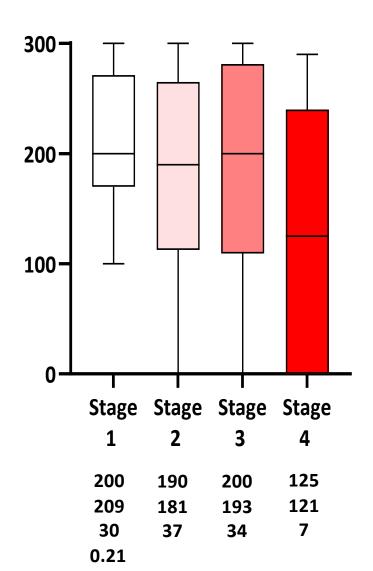


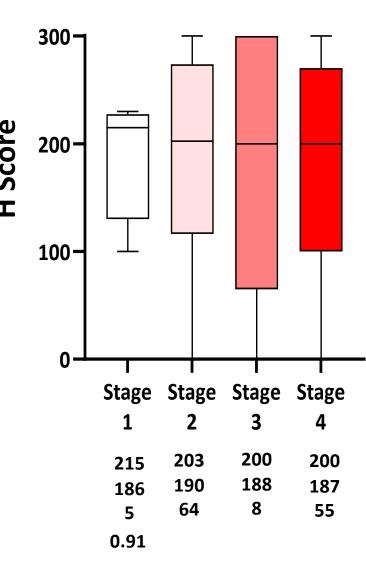

Cancer	No. of Evaluable Cases	H-Score 0 to <100		H-Score 100 to <200		H-Score 200 to 300		% of	
		No. of Cases	% of Indication	No. of Cases	% of Indication	No. of Cases	% of Indication	Indication H-score ≥100	Average H-Score
Endometrial	94	9	10	37	39	48	51	90	197
Thyroid	108	9	8	45	42	54	50	92	188
Melanoma	155	26	17	37	24	92	59	83	184
Urothelial	118	23	19	54	46	41	35	81	156
Lung	152	64	42	54	36	34	22	58	112
NSCLC	108	62	57	32	30	14	13	43	82
SCLC	44	2	5	22	50	20	46	95	183
Small intestine	54	20	37	29	54	5	9	63	102











This presentation is the intellectual property of the authors/presenters. Contact them at <u>CMarsolais@theratech.com</u> for permission to reprint and/or distribute.

